

WDHAT

Digestive Health Associates

of Texas, P.A.

Application of Bayesian Modeling with Infliximab to Determine Optimal Patient Specific Regimen

Timothy E. Ritter, MD¹; Harry E. Sarles, MD²; Robert C. McLeay, PhD³; Lucinda J. Van Anglen, PharmD⁴; Claudia P. Schroeder, PharmD, PhD⁴ ¹Texas Digestive Disease Consultants, Southlake, TX, U.S.; ²DHAT Research Institute, Garland, TX, U.S.; ³DoseMeRx, Brisbane, Australia; ⁴Healix LLC, Sugar Land, TX, U.S.

Introduction

Infliximab (IFX), a chimeric monoclonal IgG1 anti-TNF-alpha antibody, is often used to treat inflammatory bowel disease (IBD), particularly if non-biologic treatments have failed. Individualization of IFX dosing to optimize clinical response is desired with an acceptable target trough serum concentration of $\geq 5 \ \mu g/mL$, yet application of therapeutic drug monitoring (TDM) if often difficult due to significant patient variability.¹

To assist clinicians with individualized IFX dosing, a Bayesian pharmacokinetic dosing was applied to real world patients and analyzed using 2 previously published models.^{2,3}

Methods

A retrospective review of electronic medical records of adult IBD pts treated with IFX in 2 large U.S. gastroenterology private practice infusion centers.

Study Cohort:

All patients with at least 2 IFX serum concentrations and 2 IFX doses prior to TDM

Data collection:

- demographics (age, gender, weight, disease type)
- IFX treatment regimen
- IFX concentration data, dosing dates, times of TDM #1 and TDM #2
- IFX analytical methods including lower limit of quantification (LLOQ)
- and upper limit of quantification (ULOQ) parameters for IFX modeling (IFX concentration, antibodies to IFX, status, albumin, concomitant use of methotrexate (MTX)

Pharmacokinetic (PK) Modeling:

Two population PK models ^{2,3} were implemented in DoseMe[®] to fit individual patient data and determine PK parameter estimates using a single (TDM #1) or two IFX serum levels (TDM #1, TDM #2), respectively.

Model performances were evaluated using observed vs. modelpredicted concentration plots, R², bias, mean absolute error (MAE) and root mean squared error (RMSE). Sensitivity defined as detection of sub-therapeutic IFX concentrations, specificity defined as identification of IFX pts with IFX ≥5 mg/mL, negative predictive value (NPV, IFX level >5 mg/mL), false positive rate and accuracy are provided for each model.

Statistical analysis:

Descriptive statistics (mean, median, interquartile range) were used to present values, frequencies and proportions.

Table 1. Patient Characteristics

Variable (n=59)	Median or N	
Age (years)	43	
Gender, male, n (%)	28 (47)	
Weight (kg)	77	
Disease type, n (%)		
Crohn's disease	40 (68)	
Ulcerative colitis	19 (32)	

Table 2. IFX Treatment Regimen

Variable	Median or N	Interquartile Range
IFX dose (mg/kg)	5.5	5.2 - 6.3
Frequency (wk)	7.9	5.9 - 8.0
IFX dose (mg/kg/wk)	0.75	0.6 - 1.3
Frequency >q8wk, n (%)	12 (20)	
Length of IFX therapy (yrs)	1.3	0.7 - 4.3

Figure 1. IFX Analytical Methods

Parameter	TDM #1	
IFX serum level (µg/mL)		
Median (interquartile range)	3.8 (1.9-10.9)	8.0
Antibodies to IFX status		
No. of pts positive	3 (5%)	
Albumin (g/dL)		
No. of pts w/ available level	43 (73%)	
Median (interquartile range)	4.2 (3.9-4.5)	4
Concomitant MTX use		
No. of pts	1 (1.7%)	

Discussion

This study evaluated the performance of Bayesian modeling for real-world IFX dose optimization using one and two-compartment models for comparison.^{2,3}

- 59 pts (40 CD, 19 UC) with a median length of 1.3 years on IFX maintenance therapy were included in PK analyses.
- The one-compartment model² using a single IFX serum level and 3 covariates (age, gender, weight) allows prediction with 90.9% certainty (R²=0.29), if a patient will achieve therapeutic IFX concentrations ($\geq 5 \text{ mg/mL}$).
- The two-compartment model³ using a single IFX serum level and 6 covariates (age, gender, weight, albumin, antibodies to IFX, use of MTX) allows prediction with 89.3% certainty (R²=0.25), if a patient will achieve therapeutic IFX concentrations.
- PK modeling included both trough and random IFX serum levels.
- These data suggest there is no advantage on model fit nor predictive performance gained using a more complex twocompartment model compared to a simpler one-compartment model including a single trough or random IFX serum level.
- Multiple analytical methods with different sensitivities were used to assess serum concentrations and antibodies to IFX in this real-world study cohort, potentially contributing to observed variability in quantification.
- Limitations to this study include a small sample size of pts with IFX antibodies and with concomitant use of MTX for conclusive assessment. In addition, the median time between 2 TDMs was relatively long.

Conclusions

The one-compartment model using a single IFX trough or random serum level and 3 covariates can identify IBD pts with high predictability (91%), who will achieve therapeutic IFX drug concentrations (≥5 µg/mL).

Validation of this Bayesian forecasting model using a larger dataset would provide a decision tool for early identification of pts requiring IFX dose optimization.

Long-term application and study of pharmacokinetic TDM may also show improved IFX clinical response and reduced formation of IFX antibodies.

References

- 1. Frymoyer A. et al. JPGN 65: 639-45, 2017
- 2. Ternant D. et al. Clin Pharmacokinet 57: 1173-84, 2018
- 3. Fasanmade AA. et al. Eur J Clin Pharmacol 65: 1211-28, 2009

No. Pts	V _D - L (CV%)	CL - L/day (CV%)
482	3.63 (0.31)	0.37 (0.25)
59	4.97 (0.80)	0.50 (0.87)
59	4.98 (0.80)	0.49 (0.83)

May 18 to 21, 2019; San Diego, CA